INTRO

Ogni EDUAZIONE con UNA VARIABILE pui esser suittee come P(x) = 0.

ESEMPIO: Date l'equazione 2x-3=2 noniant nishivelle come regul

$$2 \times -3 = 2$$

$$(3) 2 \times -5 = 0 \quad \left(\begin{array}{c} \text{SOTTRATTO} & 2 \\ \text{AD ENTRAMBI I LATI} \end{array} \right)$$

desque nonerdes P(x) = 2x - 5 abbiant nivoités la nortra equazione iniziele, nella forma P(x) = 0.

Mei cari più SEMPRICI è nonitile trovore em FORMULA che ci permette di rivolvere in mode ESATTO la nortra equazione. Questo è il care per i Perinomi di PRIMO e SECONDO GRADO. Sonfatti,

• Se
$$f(x) = ax + G$$
, allow $x = -G$

• Se
$$P(x) = \alpha x^2 + \theta x + c$$
, allow

$$\times_{1/2} = -G \pm \sqrt{G^2 - 4ec}$$

$$2e$$

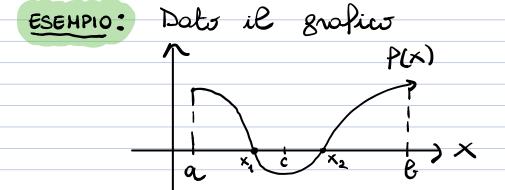
Mon semme é nossibile nisolvère l'equazione P(x) = 0 in moder ESATTO. Ad exemples, non existe una FORHULA GENERALE per la seguente eq.

$$a x^{5} + G x^{4} + c x^{3} + d x^{2} + e x + f = 0$$

Son querti cari dolbians studione dei METODI, o ALGORITHI, le ci permettons di APPROSSIHARE la voluzione da noi niercate.

la RICERCA delle volurioni approximate è commonta da due fasi:

1) Mella prima fare vogliant individuare degli intervazzi che contenzon soltanto era RADICE.



Due sombili intervalli utili son [a,c] e [c,b], in quanto il mino contiene sobs la rodice ×1, mentre il secondo sobs la rodice ×2. 2) Per OGNI intervallo trovato, applichemo un HETODO DI APPROSSIHAZIONE per calculare la volutione con il gnodes di PRECISIONE voluto.

OSSERVAZIONE: Existent voni HETODI DI APPROSS.

Metadi diveri nomon mesentare caratteristiche e proprietà divere. A moi interemant

- LA VELOCITÀ DEL HETODO, ovver il numero di ITERAZIONI nichieste ner avvicinanci al valore della roluzione.
- LA PRECISIONE DEL HETODO, OUVES le tins di GARANZIE il metods ii offre ninette ell'ERRORE del APPROSSIMAZIONE.

Andians quinti a desnivere dei rimbleti TEORICI, ovver dei TEOREMI, le ii permettor di risolvere il probleme 1), detto enche probleme della SEPARAZIONE DELLE RADICI.

SEPARAZIONE DELLE RADICI

TEOREHA DI ESISTENZA DEGLI ZERI

Sia Pena Penazione CONTINUA mell'intervallo [a, b] CHIUSO e LIMITATO.

P(x)

Se f(a) · f(b) <0, ovves se famime valori di SEGNO OPPOSTO negli estremi olellintervallo a, b, allow ESISTE ALHENO

un pento c'nell'intervallo [a, b] tule de PCC) = 0.

Motians de l'insteri di continuità è era conditione NECESSARIA per auter applicare il TEOREMA, come dimontrato a seguire

I NON CONTINUA CONTRO ESEUPIO Motians de flet. Plet <0, PUX) ma comunque P mon si annulla mei in Lo, GJ.

ESEMPIO: Date la funcione P(X) = 3x²-2

e dats l'intervalls [a,b] = Lo, 2]

omervians le l'é una funcione polinomiale
ed é quindi continua e de l'intervalls [a,b]

dats é chiuso e l'initato. Rispettando le

ipotesi del teorema ci bosta notare de

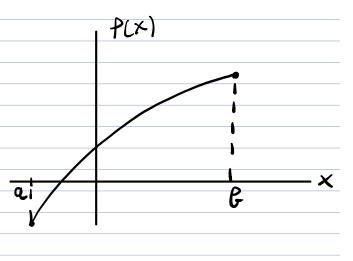
P(0) = -2 e P(3) = 10 per conclubere

cle esiste almeno uno rero di l'in [0,2]

PRINO TEOREMA DI UNICITÀ DELLO ZERO

Sia Pena Penazione CONTINUA mell'intervallo [a, b] CHIUSO e LIMITATO e nia P DERIVABILE con derivate prima diversa da O in [a, b]

Se Pla). Plb) <0,
allova Esiste un solo
Punto c in [a, b]
in ui P si annulla,
ouver t.c. Plc) =0.



SECONDO TEOREHA DI UNICITÀ DELLO ZERO
Sia f era femrione continua mell'intervallo [a, B] CHIUSO E LIMITATO E MA P DERIVABILE DUE VOLTE in [a, B]
Se $f(a) \cdot f(b) < 0$ e $f'(x) > 0$ or pure $f''(x) < 0$ Allora Esiste un solo punto c in [a, b] in f ri annulla, ovver $f(c) = 0$.

APPROSSIMAZIONE DELLE RADICI

Andiano adem a dernivere alcuni metadi ner APPROSSIHARE il valore di eva radice.

METODO DI BISEZIONE

Al fine di localizzare uno zero di f in Le, 63 procedians calcolando il punto MEDIO C, dalo de

$$C = \frac{a+b}{2}$$

Une voltre colcolato C possians evere exattamente un dei cari a seguire

In quests car obtient trovator uns zens di l'in [0,6] e ci FERHIAMO.

In quests car ITERIANO il procedimento nell'intervallo più piccolo a SINISTRA, ovver [a, c].

In quests car ITERIANO il proledimento nell'intervallo più piccolo a DESTRA, ovver [c, b].

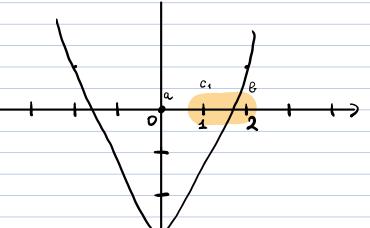
ESEMPIO:

$$P(x) = x^2 - 3$$

 $[0, 6] = [0, 2]$

1° PASSO

$$C_1 = \frac{a+b}{2} = \frac{0+2}{2} = \frac{2}{2} = 1$$

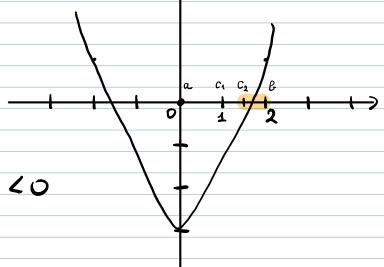


Dunque PCC1). PCC) <0 e iteriem in

2° PASSO

$$C_2 = \frac{1+2}{2} = \frac{3}{2}$$

$$P(c_2) = \frac{9}{4} - 3 = \frac{-3}{4}$$

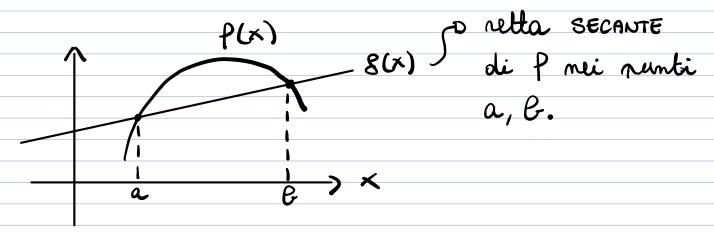


Dunque $f(C_2) \cdot f(B) < 0$ e iteriem in $[C_2, B] = [\frac{3}{2}, 2]$

Motiam el più ITERAZIONI effettuiono e più ci avviciniam allo ZERO niercato. En eltri termini, il pouno converce el valore della rodice di f.

METODO DELLE SECANTI

Si bara sul calcolit di rette SECANTI per trovare il punto C da utilizzare per suddividere l'intervallo in cui vicerce la rodice



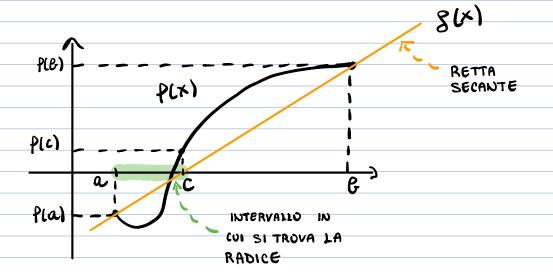
$$g(x) = \frac{f(b) - f(a)}{b - a} \cdot (x - a) + f(a)$$

Motians le s(a) = f(a) e s(b) = f(b).

- SC HETODO DELLE SECANTI É quindi desnitts come segue:
 - 1) Si CALCOLA l'equazione g(x) della RETTA SECANTE ad P nei punti a, l.
 - 2) Si trova il punto c tole de g(c) = 0

3) A reconda dei SEGNI dei Valori Pla), Plb) e Plc) ni ruglie il SOTTO-INTERVALIO tra [a,c], [c,b] cle contiene alment una radice.

Graficamente il metado è applicato come segue

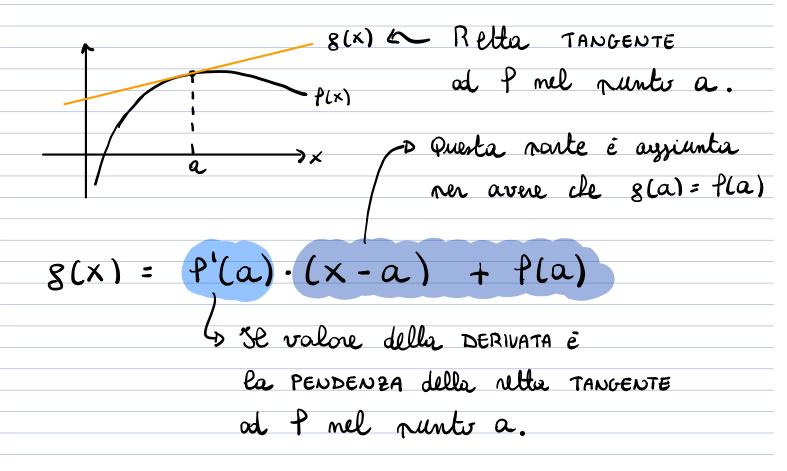


Dots de P(c). P(a) <0, albiens le la rodie ni trover nell'interrelle [a,c].

OSSERVAZIONE: Se metodo appera dernito e molto rimile al HETODO DI BISEZIONE. La DIFFERENZA nta mel modo in cui viene calcalato il nunto intermedio C: mel HETODO DI BISEZIONE C è il pento HEDIO dell'intervallo [a, b], mentre nel HETODO DELLE SECANTI C è il punto in cui la SECANTE di P mei punti a e b si ANNULLA.

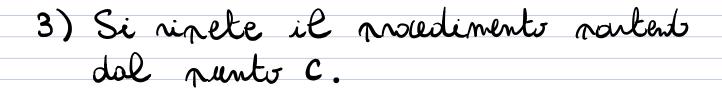
METODO DELLE TANGENTI

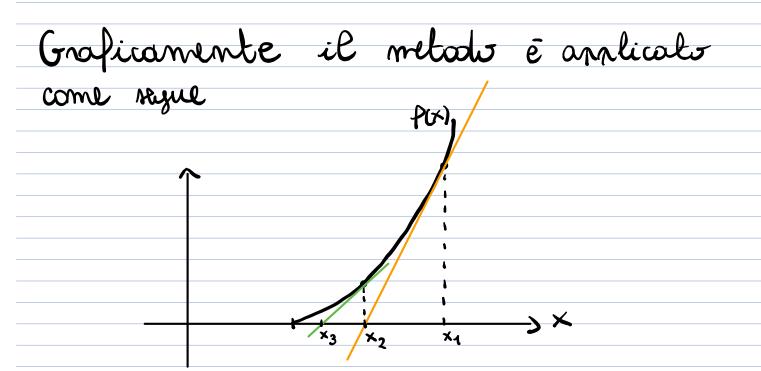
Holter simile el metode viste prima, ma al porte delle SECANTI veryone utilizzate le TANGENTI.



Il metods pui quindi essere desnittes come segue:

- 1) Si CALCOLA l'equazione g(x) della RETTA TANGENTE ad P mel punto a.
- 2) Si trova il punto c tole de g(c)=0





Come è nonibile vedere, niù itearioni del metodo si effettuar e più ci avriciniam al volore della rodire.

NOTA BENE: NON SEMPRE il metodo delle

tangenti funciona, ovver converge al valore della RADICE. La CONVERGENZA del metodo dipende dal PUNTO INIZIALE relto.

HETODO DEL PUNTO FISSO TODO.